Physics III ISI B.Math

Mid Semestral Exam: September 7, 2009

Total Marks: 100

Answer any five questions

1. (i) One of the following two fields is an impossible electrostatic field. Which one? Justify your answer.

(a)
$$\mathbf{E} = k[xy\hat{\mathbf{x}} + 2yz\hat{\mathbf{y}} + 3xz\hat{\mathbf{z}}]$$

(b)
$$\mathbf{E} = k[y^2\hat{\mathbf{x}} + (2xy + z^2)\hat{\mathbf{y}} + 2yz\hat{\mathbf{z}}]$$
 (6)

(ii) Evaluate the integral

$$J = \int_{V} e^{-r} \left(\nabla \cdot \frac{\hat{\mathbf{r}}}{r^2} \right) d\tau$$

where V is a sphere of radius R, centred at the origin. (6)

(iii) The sphere of radius a was filled with positive charge at uniform density

 ρ . Then a smaller sphere of radius $\frac{\alpha}{2}$ was carved out as shown in the figure, and left empty. What is the direction and magnitude of the electric field at A? at B?(§)

2. A static charge distribution produces a radial electric field

$$\mathbf{E} = A \frac{e^{-br}}{r} \hat{\mathbf{r}}$$

1

where A and b are constants.

- (a) What is the charge density? Sketch it.(12)
- (b) What is the total charge Q?(8)

3. (a) Justify Earnshaw's Theorem: A charged particle cannot be held in

a stable equilibrium by electrostatic forces alone.(5)

(b) Two uniform infinite sheets of electric charge densities $+\sigma$ and $-\sigma$ intersect at right angles. Find the magnitude and direction of the electric field everywhere and sketch the lines of E.(8)

(c) Find the total energy of a uniformly charged spherical shell of total charge

q and radius R.(7)

4. Two infinite grounded metal plates lie parallel to the xz plane, one at y = 0, the other at y = a. The left end, at x = 0, is closed off with an infinite strip insulated from the two plates and maintained at a constant potential V_0 . Find the potential inside this "slot".(20)

5. Charges +q, -q lie at the points (x,y,z)=(a,0,a),(-a,0,a) above a grounded conducting plane at z = 0. Find

(a) The total force on the charge +q.(6)

(b) The work done against the electrostatic forces in assembling this system of charges. (6)

(c) The surface charge density at the point (a, 0, 0).(8)

6. (a) Find the potential $V(r,\theta)$ and the corresponding electric field for an electric dipole of dipole moment \mathbf{p} . Choose the dipole to be at the origin

with its dipole moment pointing in the z direction.(10)

(b) Find the bound charges and the electric field produced by a uniformly polarized sphere (with polarization P) of radius R. [Hint: model the uniformly polarized sphere as two uniformly charged spheres one positively charged and one negatively charged superposed with a slight displacement of their centres. Justify this model in a few lines before you proceed.](10)